1003 lines
38 KiB
C++
1003 lines
38 KiB
C++
// Copyright 2019 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// File: inlined_vector.h
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// This header file contains the declaration and definition of an "inlined
|
|
// vector" which behaves in an equivalent fashion to a `std::vector`, except
|
|
// that storage for small sequences of the vector are provided inline without
|
|
// requiring any heap allocation.
|
|
//
|
|
// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
|
|
// its template parameters. Instances where `size() <= N` hold contained
|
|
// elements in inline space. Typically `N` is very small so that sequences that
|
|
// are expected to be short do not require allocations.
|
|
//
|
|
// An `absl::InlinedVector` does not usually require a specific allocator. If
|
|
// the inlined vector grows beyond its initial constraints, it will need to
|
|
// allocate (as any normal `std::vector` would). This is usually performed with
|
|
// the default allocator (defined as `std::allocator<T>`). Optionally, a custom
|
|
// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
|
|
|
|
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
|
|
#define ABSL_CONTAINER_INLINED_VECTOR_H_
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/algorithm/algorithm.h"
|
|
#include "absl/base/internal/throw_delegate.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/base/optimization.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/container/internal/inlined_vector.h"
|
|
#include "absl/memory/memory.h"
|
|
#include "absl/meta/type_traits.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
// -----------------------------------------------------------------------------
|
|
// InlinedVector
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// An `absl::InlinedVector` is designed to be a drop-in replacement for
|
|
// `std::vector` for use cases where the vector's size is sufficiently small
|
|
// that it can be inlined. If the inlined vector does grow beyond its estimated
|
|
// capacity, it will trigger an initial allocation on the heap, and will behave
|
|
// as a `std::vector`. The API of the `absl::InlinedVector` within this file is
|
|
// designed to cover the same API footprint as covered by `std::vector`.
|
|
template <typename T, size_t N, typename A = std::allocator<T>>
|
|
class InlinedVector {
|
|
static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
|
|
|
|
using Storage = inlined_vector_internal::Storage<T, N, A>;
|
|
|
|
template <typename TheA>
|
|
using AllocatorTraits = inlined_vector_internal::AllocatorTraits<TheA>;
|
|
template <typename TheA>
|
|
using MoveIterator = inlined_vector_internal::MoveIterator<TheA>;
|
|
template <typename TheA>
|
|
using IsMoveAssignOk = inlined_vector_internal::IsMoveAssignOk<TheA>;
|
|
|
|
template <typename TheA, typename Iterator>
|
|
using IteratorValueAdapter =
|
|
inlined_vector_internal::IteratorValueAdapter<TheA, Iterator>;
|
|
template <typename TheA>
|
|
using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter<TheA>;
|
|
template <typename TheA>
|
|
using DefaultValueAdapter =
|
|
inlined_vector_internal::DefaultValueAdapter<TheA>;
|
|
|
|
template <typename Iterator>
|
|
using EnableIfAtLeastForwardIterator = absl::enable_if_t<
|
|
inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
|
|
template <typename Iterator>
|
|
using DisableIfAtLeastForwardIterator = absl::enable_if_t<
|
|
!inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
|
|
|
|
using MemcpyPolicy = typename Storage::MemcpyPolicy;
|
|
using ElementwiseAssignPolicy = typename Storage::ElementwiseAssignPolicy;
|
|
using ElementwiseConstructPolicy =
|
|
typename Storage::ElementwiseConstructPolicy;
|
|
using MoveAssignmentPolicy = typename Storage::MoveAssignmentPolicy;
|
|
|
|
public:
|
|
using allocator_type = A;
|
|
using value_type = inlined_vector_internal::ValueType<A>;
|
|
using pointer = inlined_vector_internal::Pointer<A>;
|
|
using const_pointer = inlined_vector_internal::ConstPointer<A>;
|
|
using size_type = inlined_vector_internal::SizeType<A>;
|
|
using difference_type = inlined_vector_internal::DifferenceType<A>;
|
|
using reference = inlined_vector_internal::Reference<A>;
|
|
using const_reference = inlined_vector_internal::ConstReference<A>;
|
|
using iterator = inlined_vector_internal::Iterator<A>;
|
|
using const_iterator = inlined_vector_internal::ConstIterator<A>;
|
|
using reverse_iterator = inlined_vector_internal::ReverseIterator<A>;
|
|
using const_reverse_iterator =
|
|
inlined_vector_internal::ConstReverseIterator<A>;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// InlinedVector Constructors and Destructor
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Creates an empty inlined vector with a value-initialized allocator.
|
|
InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
|
|
|
|
// Creates an empty inlined vector with a copy of `allocator`.
|
|
explicit InlinedVector(const allocator_type& allocator) noexcept
|
|
: storage_(allocator) {}
|
|
|
|
// Creates an inlined vector with `n` copies of `value_type()`.
|
|
explicit InlinedVector(size_type n,
|
|
const allocator_type& allocator = allocator_type())
|
|
: storage_(allocator) {
|
|
storage_.Initialize(DefaultValueAdapter<A>(), n);
|
|
}
|
|
|
|
// Creates an inlined vector with `n` copies of `v`.
|
|
InlinedVector(size_type n, const_reference v,
|
|
const allocator_type& allocator = allocator_type())
|
|
: storage_(allocator) {
|
|
storage_.Initialize(CopyValueAdapter<A>(std::addressof(v)), n);
|
|
}
|
|
|
|
// Creates an inlined vector with copies of the elements of `list`.
|
|
InlinedVector(std::initializer_list<value_type> list,
|
|
const allocator_type& allocator = allocator_type())
|
|
: InlinedVector(list.begin(), list.end(), allocator) {}
|
|
|
|
// Creates an inlined vector with elements constructed from the provided
|
|
// forward iterator range [`first`, `last`).
|
|
//
|
|
// NOTE: the `enable_if` prevents ambiguous interpretation between a call to
|
|
// this constructor with two integral arguments and a call to the above
|
|
// `InlinedVector(size_type, const_reference)` constructor.
|
|
template <typename ForwardIterator,
|
|
EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
|
|
InlinedVector(ForwardIterator first, ForwardIterator last,
|
|
const allocator_type& allocator = allocator_type())
|
|
: storage_(allocator) {
|
|
storage_.Initialize(IteratorValueAdapter<A, ForwardIterator>(first),
|
|
static_cast<size_t>(std::distance(first, last)));
|
|
}
|
|
|
|
// Creates an inlined vector with elements constructed from the provided input
|
|
// iterator range [`first`, `last`).
|
|
template <typename InputIterator,
|
|
DisableIfAtLeastForwardIterator<InputIterator> = 0>
|
|
InlinedVector(InputIterator first, InputIterator last,
|
|
const allocator_type& allocator = allocator_type())
|
|
: storage_(allocator) {
|
|
std::copy(first, last, std::back_inserter(*this));
|
|
}
|
|
|
|
// Creates an inlined vector by copying the contents of `other` using
|
|
// `other`'s allocator.
|
|
InlinedVector(const InlinedVector& other)
|
|
: InlinedVector(other, other.storage_.GetAllocator()) {}
|
|
|
|
// Creates an inlined vector by copying the contents of `other` using the
|
|
// provided `allocator`.
|
|
InlinedVector(const InlinedVector& other, const allocator_type& allocator)
|
|
: storage_(allocator) {
|
|
// Fast path: if the other vector is empty, there's nothing for us to do.
|
|
if (other.empty()) {
|
|
return;
|
|
}
|
|
|
|
// Fast path: if the value type is trivially copy constructible, we know the
|
|
// allocator doesn't do anything fancy, and there is nothing on the heap
|
|
// then we know it is legal for us to simply memcpy the other vector's
|
|
// inlined bytes to form our copy of its elements.
|
|
if (absl::is_trivially_copy_constructible<value_type>::value &&
|
|
std::is_same<A, std::allocator<value_type>>::value &&
|
|
!other.storage_.GetIsAllocated()) {
|
|
storage_.MemcpyFrom(other.storage_);
|
|
return;
|
|
}
|
|
|
|
storage_.InitFrom(other.storage_);
|
|
}
|
|
|
|
// Creates an inlined vector by moving in the contents of `other` without
|
|
// allocating. If `other` contains allocated memory, the newly-created inlined
|
|
// vector will take ownership of that memory. However, if `other` does not
|
|
// contain allocated memory, the newly-created inlined vector will perform
|
|
// element-wise move construction of the contents of `other`.
|
|
//
|
|
// NOTE: since no allocation is performed for the inlined vector in either
|
|
// case, the `noexcept(...)` specification depends on whether moving the
|
|
// underlying objects can throw. It is assumed assumed that...
|
|
// a) move constructors should only throw due to allocation failure.
|
|
// b) if `value_type`'s move constructor allocates, it uses the same
|
|
// allocation function as the inlined vector's allocator.
|
|
// Thus, the move constructor is non-throwing if the allocator is non-throwing
|
|
// or `value_type`'s move constructor is specified as `noexcept`.
|
|
InlinedVector(InlinedVector&& other) noexcept(
|
|
absl::allocator_is_nothrow<allocator_type>::value ||
|
|
std::is_nothrow_move_constructible<value_type>::value)
|
|
: storage_(other.storage_.GetAllocator()) {
|
|
// Fast path: if the value type can be trivially relocated (i.e. moved from
|
|
// and destroyed), and we know the allocator doesn't do anything fancy, then
|
|
// it's safe for us to simply adopt the contents of the storage for `other`
|
|
// and remove its own reference to them. It's as if we had individually
|
|
// move-constructed each value and then destroyed the original.
|
|
if (absl::is_trivially_relocatable<value_type>::value &&
|
|
std::is_same<A, std::allocator<value_type>>::value) {
|
|
storage_.MemcpyFrom(other.storage_);
|
|
other.storage_.SetInlinedSize(0);
|
|
return;
|
|
}
|
|
|
|
// Fast path: if the other vector is on the heap, we can simply take over
|
|
// its allocation.
|
|
if (other.storage_.GetIsAllocated()) {
|
|
storage_.SetAllocation({other.storage_.GetAllocatedData(),
|
|
other.storage_.GetAllocatedCapacity()});
|
|
storage_.SetAllocatedSize(other.storage_.GetSize());
|
|
|
|
other.storage_.SetInlinedSize(0);
|
|
return;
|
|
}
|
|
|
|
// Otherwise we must move each element individually.
|
|
IteratorValueAdapter<A, MoveIterator<A>> other_values(
|
|
MoveIterator<A>(other.storage_.GetInlinedData()));
|
|
|
|
inlined_vector_internal::ConstructElements<A>(
|
|
storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
|
|
other.storage_.GetSize());
|
|
|
|
storage_.SetInlinedSize(other.storage_.GetSize());
|
|
}
|
|
|
|
// Creates an inlined vector by moving in the contents of `other` with a copy
|
|
// of `allocator`.
|
|
//
|
|
// NOTE: if `other`'s allocator is not equal to `allocator`, even if `other`
|
|
// contains allocated memory, this move constructor will still allocate. Since
|
|
// allocation is performed, this constructor can only be `noexcept` if the
|
|
// specified allocator is also `noexcept`.
|
|
InlinedVector(
|
|
InlinedVector&& other,
|
|
const allocator_type&
|
|
allocator) noexcept(absl::allocator_is_nothrow<allocator_type>::value)
|
|
: storage_(allocator) {
|
|
// Fast path: if the value type can be trivially relocated (i.e. moved from
|
|
// and destroyed), and we know the allocator doesn't do anything fancy, then
|
|
// it's safe for us to simply adopt the contents of the storage for `other`
|
|
// and remove its own reference to them. It's as if we had individually
|
|
// move-constructed each value and then destroyed the original.
|
|
if (absl::is_trivially_relocatable<value_type>::value &&
|
|
std::is_same<A, std::allocator<value_type>>::value) {
|
|
storage_.MemcpyFrom(other.storage_);
|
|
other.storage_.SetInlinedSize(0);
|
|
return;
|
|
}
|
|
|
|
// Fast path: if the other vector is on the heap and shared the same
|
|
// allocator, we can simply take over its allocation.
|
|
if ((storage_.GetAllocator() == other.storage_.GetAllocator()) &&
|
|
other.storage_.GetIsAllocated()) {
|
|
storage_.SetAllocation({other.storage_.GetAllocatedData(),
|
|
other.storage_.GetAllocatedCapacity()});
|
|
storage_.SetAllocatedSize(other.storage_.GetSize());
|
|
|
|
other.storage_.SetInlinedSize(0);
|
|
return;
|
|
}
|
|
|
|
// Otherwise we must move each element individually.
|
|
storage_.Initialize(
|
|
IteratorValueAdapter<A, MoveIterator<A>>(MoveIterator<A>(other.data())),
|
|
other.size());
|
|
}
|
|
|
|
~InlinedVector() {}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// InlinedVector Member Accessors
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// `InlinedVector::empty()`
|
|
//
|
|
// Returns whether the inlined vector contains no elements.
|
|
bool empty() const noexcept { return !size(); }
|
|
|
|
// `InlinedVector::size()`
|
|
//
|
|
// Returns the number of elements in the inlined vector.
|
|
size_type size() const noexcept { return storage_.GetSize(); }
|
|
|
|
// `InlinedVector::max_size()`
|
|
//
|
|
// Returns the maximum number of elements the inlined vector can hold.
|
|
size_type max_size() const noexcept {
|
|
// One bit of the size storage is used to indicate whether the inlined
|
|
// vector contains allocated memory. As a result, the maximum size that the
|
|
// inlined vector can express is the minimum of the limit of how many
|
|
// objects we can allocate and std::numeric_limits<size_type>::max() / 2.
|
|
return (std::min)(AllocatorTraits<A>::max_size(storage_.GetAllocator()),
|
|
(std::numeric_limits<size_type>::max)() / 2);
|
|
}
|
|
|
|
// `InlinedVector::capacity()`
|
|
//
|
|
// Returns the number of elements that could be stored in the inlined vector
|
|
// without requiring a reallocation.
|
|
//
|
|
// NOTE: for most inlined vectors, `capacity()` should be equal to the
|
|
// template parameter `N`. For inlined vectors which exceed this capacity,
|
|
// they will no longer be inlined and `capacity()` will equal the capactity of
|
|
// the allocated memory.
|
|
size_type capacity() const noexcept {
|
|
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
|
|
: storage_.GetInlinedCapacity();
|
|
}
|
|
|
|
// `InlinedVector::data()`
|
|
//
|
|
// Returns a `pointer` to the elements of the inlined vector. This pointer
|
|
// can be used to access and modify the contained elements.
|
|
//
|
|
// NOTE: only elements within [`data()`, `data() + size()`) are valid.
|
|
pointer data() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
|
|
: storage_.GetInlinedData();
|
|
}
|
|
|
|
// Overload of `InlinedVector::data()` that returns a `const_pointer` to the
|
|
// elements of the inlined vector. This pointer can be used to access but not
|
|
// modify the contained elements.
|
|
//
|
|
// NOTE: only elements within [`data()`, `data() + size()`) are valid.
|
|
const_pointer data() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
|
|
: storage_.GetInlinedData();
|
|
}
|
|
|
|
// `InlinedVector::operator[](...)`
|
|
//
|
|
// Returns a `reference` to the `i`th element of the inlined vector.
|
|
reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(i < size());
|
|
return data()[i];
|
|
}
|
|
|
|
// Overload of `InlinedVector::operator[](...)` that returns a
|
|
// `const_reference` to the `i`th element of the inlined vector.
|
|
const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(i < size());
|
|
return data()[i];
|
|
}
|
|
|
|
// `InlinedVector::at(...)`
|
|
//
|
|
// Returns a `reference` to the `i`th element of the inlined vector.
|
|
//
|
|
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
|
|
// in both debug and non-debug builds, `std::out_of_range` will be thrown.
|
|
reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
base_internal::ThrowStdOutOfRange(
|
|
"`InlinedVector::at(size_type)` failed bounds check");
|
|
}
|
|
return data()[i];
|
|
}
|
|
|
|
// Overload of `InlinedVector::at(...)` that returns a `const_reference` to
|
|
// the `i`th element of the inlined vector.
|
|
//
|
|
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
|
|
// in both debug and non-debug builds, `std::out_of_range` will be thrown.
|
|
const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
base_internal::ThrowStdOutOfRange(
|
|
"`InlinedVector::at(size_type) const` failed bounds check");
|
|
}
|
|
return data()[i];
|
|
}
|
|
|
|
// `InlinedVector::front()`
|
|
//
|
|
// Returns a `reference` to the first element of the inlined vector.
|
|
reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
return data()[0];
|
|
}
|
|
|
|
// Overload of `InlinedVector::front()` that returns a `const_reference` to
|
|
// the first element of the inlined vector.
|
|
const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
return data()[0];
|
|
}
|
|
|
|
// `InlinedVector::back()`
|
|
//
|
|
// Returns a `reference` to the last element of the inlined vector.
|
|
reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
return data()[size() - 1];
|
|
}
|
|
|
|
// Overload of `InlinedVector::back()` that returns a `const_reference` to the
|
|
// last element of the inlined vector.
|
|
const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
return data()[size() - 1];
|
|
}
|
|
|
|
// `InlinedVector::begin()`
|
|
//
|
|
// Returns an `iterator` to the beginning of the inlined vector.
|
|
iterator begin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
|
|
|
|
// Overload of `InlinedVector::begin()` that returns a `const_iterator` to
|
|
// the beginning of the inlined vector.
|
|
const_iterator begin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return data();
|
|
}
|
|
|
|
// `InlinedVector::end()`
|
|
//
|
|
// Returns an `iterator` to the end of the inlined vector.
|
|
iterator end() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return data() + size();
|
|
}
|
|
|
|
// Overload of `InlinedVector::end()` that returns a `const_iterator` to the
|
|
// end of the inlined vector.
|
|
const_iterator end() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return data() + size();
|
|
}
|
|
|
|
// `InlinedVector::cbegin()`
|
|
//
|
|
// Returns a `const_iterator` to the beginning of the inlined vector.
|
|
const_iterator cbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return begin();
|
|
}
|
|
|
|
// `InlinedVector::cend()`
|
|
//
|
|
// Returns a `const_iterator` to the end of the inlined vector.
|
|
const_iterator cend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return end();
|
|
}
|
|
|
|
// `InlinedVector::rbegin()`
|
|
//
|
|
// Returns a `reverse_iterator` from the end of the inlined vector.
|
|
reverse_iterator rbegin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return reverse_iterator(end());
|
|
}
|
|
|
|
// Overload of `InlinedVector::rbegin()` that returns a
|
|
// `const_reverse_iterator` from the end of the inlined vector.
|
|
const_reverse_iterator rbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
|
|
// `InlinedVector::rend()`
|
|
//
|
|
// Returns a `reverse_iterator` from the beginning of the inlined vector.
|
|
reverse_iterator rend() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return reverse_iterator(begin());
|
|
}
|
|
|
|
// Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
|
|
// from the beginning of the inlined vector.
|
|
const_reverse_iterator rend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
// `InlinedVector::crbegin()`
|
|
//
|
|
// Returns a `const_reverse_iterator` from the end of the inlined vector.
|
|
const_reverse_iterator crbegin() const noexcept
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return rbegin();
|
|
}
|
|
|
|
// `InlinedVector::crend()`
|
|
//
|
|
// Returns a `const_reverse_iterator` from the beginning of the inlined
|
|
// vector.
|
|
const_reverse_iterator crend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return rend();
|
|
}
|
|
|
|
// `InlinedVector::get_allocator()`
|
|
//
|
|
// Returns a copy of the inlined vector's allocator.
|
|
allocator_type get_allocator() const { return storage_.GetAllocator(); }
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// InlinedVector Member Mutators
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// `InlinedVector::operator=(...)`
|
|
//
|
|
// Replaces the elements of the inlined vector with copies of the elements of
|
|
// `list`.
|
|
InlinedVector& operator=(std::initializer_list<value_type> list) {
|
|
assign(list.begin(), list.end());
|
|
|
|
return *this;
|
|
}
|
|
|
|
// Overload of `InlinedVector::operator=(...)` that replaces the elements of
|
|
// the inlined vector with copies of the elements of `other`.
|
|
InlinedVector& operator=(const InlinedVector& other) {
|
|
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
|
|
const_pointer other_data = other.data();
|
|
assign(other_data, other_data + other.size());
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
// Overload of `InlinedVector::operator=(...)` that moves the elements of
|
|
// `other` into the inlined vector.
|
|
//
|
|
// NOTE: as a result of calling this overload, `other` is left in a valid but
|
|
// unspecified state.
|
|
InlinedVector& operator=(InlinedVector&& other) {
|
|
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
|
|
MoveAssignment(MoveAssignmentPolicy{}, std::move(other));
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
// `InlinedVector::assign(...)`
|
|
//
|
|
// Replaces the contents of the inlined vector with `n` copies of `v`.
|
|
void assign(size_type n, const_reference v) {
|
|
storage_.Assign(CopyValueAdapter<A>(std::addressof(v)), n);
|
|
}
|
|
|
|
// Overload of `InlinedVector::assign(...)` that replaces the contents of the
|
|
// inlined vector with copies of the elements of `list`.
|
|
void assign(std::initializer_list<value_type> list) {
|
|
assign(list.begin(), list.end());
|
|
}
|
|
|
|
// Overload of `InlinedVector::assign(...)` to replace the contents of the
|
|
// inlined vector with the range [`first`, `last`).
|
|
//
|
|
// NOTE: this overload is for iterators that are "forward" category or better.
|
|
template <typename ForwardIterator,
|
|
EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
|
|
void assign(ForwardIterator first, ForwardIterator last) {
|
|
storage_.Assign(IteratorValueAdapter<A, ForwardIterator>(first),
|
|
static_cast<size_t>(std::distance(first, last)));
|
|
}
|
|
|
|
// Overload of `InlinedVector::assign(...)` to replace the contents of the
|
|
// inlined vector with the range [`first`, `last`).
|
|
//
|
|
// NOTE: this overload is for iterators that are "input" category.
|
|
template <typename InputIterator,
|
|
DisableIfAtLeastForwardIterator<InputIterator> = 0>
|
|
void assign(InputIterator first, InputIterator last) {
|
|
size_type i = 0;
|
|
for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
|
|
data()[i] = *first;
|
|
}
|
|
|
|
erase(data() + i, data() + size());
|
|
std::copy(first, last, std::back_inserter(*this));
|
|
}
|
|
|
|
// `InlinedVector::resize(...)`
|
|
//
|
|
// Resizes the inlined vector to contain `n` elements.
|
|
//
|
|
// NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n`
|
|
// is larger than `size()`, new elements are value-initialized.
|
|
void resize(size_type n) {
|
|
ABSL_HARDENING_ASSERT(n <= max_size());
|
|
storage_.Resize(DefaultValueAdapter<A>(), n);
|
|
}
|
|
|
|
// Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
|
|
// contain `n` elements.
|
|
//
|
|
// NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
|
|
// is larger than `size()`, new elements are copied-constructed from `v`.
|
|
void resize(size_type n, const_reference v) {
|
|
ABSL_HARDENING_ASSERT(n <= max_size());
|
|
storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n);
|
|
}
|
|
|
|
// `InlinedVector::insert(...)`
|
|
//
|
|
// Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
|
|
// inserted element.
|
|
iterator insert(const_iterator pos,
|
|
const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return emplace(pos, v);
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
|
|
// move semantics, returning an `iterator` to the newly inserted element.
|
|
iterator insert(const_iterator pos,
|
|
value_type&& v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return emplace(pos, std::move(v));
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
|
|
// of `v` starting at `pos`, returning an `iterator` pointing to the first of
|
|
// the newly inserted elements.
|
|
iterator insert(const_iterator pos, size_type n,
|
|
const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(pos >= begin());
|
|
ABSL_HARDENING_ASSERT(pos <= end());
|
|
|
|
if (ABSL_PREDICT_TRUE(n != 0)) {
|
|
value_type dealias = v;
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
|
|
// It appears that GCC thinks that since `pos` is a const pointer and may
|
|
// point to uninitialized memory at this point, a warning should be
|
|
// issued. But `pos` is actually only used to compute an array index to
|
|
// write to.
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
|
#endif
|
|
return storage_.Insert(pos, CopyValueAdapter<A>(std::addressof(dealias)),
|
|
n);
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
} else {
|
|
return const_cast<iterator>(pos);
|
|
}
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert(...)` that inserts copies of the
|
|
// elements of `list` starting at `pos`, returning an `iterator` pointing to
|
|
// the first of the newly inserted elements.
|
|
iterator insert(const_iterator pos, std::initializer_list<value_type> list)
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return insert(pos, list.begin(), list.end());
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
|
|
// `last`) starting at `pos`, returning an `iterator` pointing to the first
|
|
// of the newly inserted elements.
|
|
//
|
|
// NOTE: this overload is for iterators that are "forward" category or better.
|
|
template <typename ForwardIterator,
|
|
EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
|
|
iterator insert(const_iterator pos, ForwardIterator first,
|
|
ForwardIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(pos >= begin());
|
|
ABSL_HARDENING_ASSERT(pos <= end());
|
|
|
|
if (ABSL_PREDICT_TRUE(first != last)) {
|
|
return storage_.Insert(
|
|
pos, IteratorValueAdapter<A, ForwardIterator>(first),
|
|
static_cast<size_type>(std::distance(first, last)));
|
|
} else {
|
|
return const_cast<iterator>(pos);
|
|
}
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
|
|
// `last`) starting at `pos`, returning an `iterator` pointing to the first
|
|
// of the newly inserted elements.
|
|
//
|
|
// NOTE: this overload is for iterators that are "input" category.
|
|
template <typename InputIterator,
|
|
DisableIfAtLeastForwardIterator<InputIterator> = 0>
|
|
iterator insert(const_iterator pos, InputIterator first,
|
|
InputIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(pos >= begin());
|
|
ABSL_HARDENING_ASSERT(pos <= end());
|
|
|
|
size_type index = static_cast<size_type>(std::distance(cbegin(), pos));
|
|
for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
|
|
insert(data() + i, *first);
|
|
}
|
|
|
|
return iterator(data() + index);
|
|
}
|
|
|
|
// `InlinedVector::emplace(...)`
|
|
//
|
|
// Constructs and inserts an element using `args...` in the inlined vector at
|
|
// `pos`, returning an `iterator` pointing to the newly emplaced element.
|
|
template <typename... Args>
|
|
iterator emplace(const_iterator pos,
|
|
Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(pos >= begin());
|
|
ABSL_HARDENING_ASSERT(pos <= end());
|
|
|
|
value_type dealias(std::forward<Args>(args)...);
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
|
|
// It appears that GCC thinks that since `pos` is a const pointer and may
|
|
// point to uninitialized memory at this point, a warning should be
|
|
// issued. But `pos` is actually only used to compute an array index to
|
|
// write to.
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
|
#endif
|
|
return storage_.Insert(pos,
|
|
IteratorValueAdapter<A, MoveIterator<A>>(
|
|
MoveIterator<A>(std::addressof(dealias))),
|
|
1);
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// `InlinedVector::emplace_back(...)`
|
|
//
|
|
// Constructs and inserts an element using `args...` in the inlined vector at
|
|
// `end()`, returning a `reference` to the newly emplaced element.
|
|
template <typename... Args>
|
|
reference emplace_back(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return storage_.EmplaceBack(std::forward<Args>(args)...);
|
|
}
|
|
|
|
// `InlinedVector::push_back(...)`
|
|
//
|
|
// Inserts a copy of `v` in the inlined vector at `end()`.
|
|
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
|
|
|
|
// Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
|
|
// using move semantics.
|
|
void push_back(value_type&& v) {
|
|
static_cast<void>(emplace_back(std::move(v)));
|
|
}
|
|
|
|
// `InlinedVector::pop_back()`
|
|
//
|
|
// Destroys the element at `back()`, reducing the size by `1`.
|
|
void pop_back() noexcept {
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
|
|
AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1));
|
|
storage_.SubtractSize(1);
|
|
}
|
|
|
|
// `InlinedVector::erase(...)`
|
|
//
|
|
// Erases the element at `pos`, returning an `iterator` pointing to where the
|
|
// erased element was located.
|
|
//
|
|
// NOTE: may return `end()`, which is not dereferenceable.
|
|
iterator erase(const_iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(pos >= begin());
|
|
ABSL_HARDENING_ASSERT(pos < end());
|
|
|
|
return storage_.Erase(pos, pos + 1);
|
|
}
|
|
|
|
// Overload of `InlinedVector::erase(...)` that erases every element in the
|
|
// range [`from`, `to`), returning an `iterator` pointing to where the first
|
|
// erased element was located.
|
|
//
|
|
// NOTE: may return `end()`, which is not dereferenceable.
|
|
iterator erase(const_iterator from,
|
|
const_iterator to) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_HARDENING_ASSERT(from >= begin());
|
|
ABSL_HARDENING_ASSERT(from <= to);
|
|
ABSL_HARDENING_ASSERT(to <= end());
|
|
|
|
if (ABSL_PREDICT_TRUE(from != to)) {
|
|
return storage_.Erase(from, to);
|
|
} else {
|
|
return const_cast<iterator>(from);
|
|
}
|
|
}
|
|
|
|
// `InlinedVector::clear()`
|
|
//
|
|
// Destroys all elements in the inlined vector, setting the size to `0` and
|
|
// deallocating any held memory.
|
|
void clear() noexcept {
|
|
inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
|
|
storage_.GetAllocator(), data(), size());
|
|
storage_.DeallocateIfAllocated();
|
|
|
|
storage_.SetInlinedSize(0);
|
|
}
|
|
|
|
// `InlinedVector::reserve(...)`
|
|
//
|
|
// Ensures that there is enough room for at least `n` elements.
|
|
void reserve(size_type n) { storage_.Reserve(n); }
|
|
|
|
// `InlinedVector::shrink_to_fit()`
|
|
//
|
|
// Attempts to reduce memory usage by moving elements to (or keeping elements
|
|
// in) the smallest available buffer sufficient for containing `size()`
|
|
// elements.
|
|
//
|
|
// If `size()` is sufficiently small, the elements will be moved into (or kept
|
|
// in) the inlined space.
|
|
void shrink_to_fit() {
|
|
if (storage_.GetIsAllocated()) {
|
|
storage_.ShrinkToFit();
|
|
}
|
|
}
|
|
|
|
// `InlinedVector::swap(...)`
|
|
//
|
|
// Swaps the contents of the inlined vector with `other`.
|
|
void swap(InlinedVector& other) {
|
|
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
|
|
storage_.Swap(std::addressof(other.storage_));
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <typename H, typename TheT, size_t TheN, typename TheA>
|
|
friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
|
|
|
|
void MoveAssignment(MemcpyPolicy, InlinedVector&& other) {
|
|
// Assumption check: we shouldn't be told to use memcpy to implement move
|
|
// assignment unless we have trivially destructible elements and an
|
|
// allocator that does nothing fancy.
|
|
static_assert(absl::is_trivially_destructible<value_type>::value, "");
|
|
static_assert(std::is_same<A, std::allocator<value_type>>::value, "");
|
|
|
|
// Throw away our existing heap allocation, if any. There is no need to
|
|
// destroy the existing elements one by one because we know they are
|
|
// trivially destructible.
|
|
storage_.DeallocateIfAllocated();
|
|
|
|
// Adopt the other vector's inline elements or heap allocation.
|
|
storage_.MemcpyFrom(other.storage_);
|
|
other.storage_.SetInlinedSize(0);
|
|
}
|
|
|
|
// Destroy our existing elements, if any, and adopt the heap-allocated
|
|
// elements of the other vector.
|
|
//
|
|
// REQUIRES: other.storage_.GetIsAllocated()
|
|
void DestroyExistingAndAdopt(InlinedVector&& other) {
|
|
ABSL_HARDENING_ASSERT(other.storage_.GetIsAllocated());
|
|
|
|
inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
|
|
storage_.GetAllocator(), data(), size());
|
|
storage_.DeallocateIfAllocated();
|
|
|
|
storage_.MemcpyFrom(other.storage_);
|
|
other.storage_.SetInlinedSize(0);
|
|
}
|
|
|
|
void MoveAssignment(ElementwiseAssignPolicy, InlinedVector&& other) {
|
|
// Fast path: if the other vector is on the heap then we don't worry about
|
|
// actually move-assigning each element. Instead we only throw away our own
|
|
// existing elements and adopt the heap allocation of the other vector.
|
|
if (other.storage_.GetIsAllocated()) {
|
|
DestroyExistingAndAdopt(std::move(other));
|
|
return;
|
|
}
|
|
|
|
storage_.Assign(IteratorValueAdapter<A, MoveIterator<A>>(
|
|
MoveIterator<A>(other.storage_.GetInlinedData())),
|
|
other.size());
|
|
}
|
|
|
|
void MoveAssignment(ElementwiseConstructPolicy, InlinedVector&& other) {
|
|
// Fast path: if the other vector is on the heap then we don't worry about
|
|
// actually move-assigning each element. Instead we only throw away our own
|
|
// existing elements and adopt the heap allocation of the other vector.
|
|
if (other.storage_.GetIsAllocated()) {
|
|
DestroyExistingAndAdopt(std::move(other));
|
|
return;
|
|
}
|
|
|
|
inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
|
|
storage_.GetAllocator(), data(), size());
|
|
storage_.DeallocateIfAllocated();
|
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> other_values(
|
|
MoveIterator<A>(other.storage_.GetInlinedData()));
|
|
inlined_vector_internal::ConstructElements<A>(
|
|
storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
|
|
other.storage_.GetSize());
|
|
storage_.SetInlinedSize(other.storage_.GetSize());
|
|
}
|
|
|
|
Storage storage_;
|
|
};
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// InlinedVector Non-Member Functions
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// `swap(...)`
|
|
//
|
|
// Swaps the contents of two inlined vectors.
|
|
template <typename T, size_t N, typename A>
|
|
void swap(absl::InlinedVector<T, N, A>& a,
|
|
absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
|
|
a.swap(b);
|
|
}
|
|
|
|
// `operator==(...)`
|
|
//
|
|
// Tests for value-equality of two inlined vectors.
|
|
template <typename T, size_t N, typename A>
|
|
bool operator==(const absl::InlinedVector<T, N, A>& a,
|
|
const absl::InlinedVector<T, N, A>& b) {
|
|
auto a_data = a.data();
|
|
auto b_data = b.data();
|
|
return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
|
|
}
|
|
|
|
// `operator!=(...)`
|
|
//
|
|
// Tests for value-inequality of two inlined vectors.
|
|
template <typename T, size_t N, typename A>
|
|
bool operator!=(const absl::InlinedVector<T, N, A>& a,
|
|
const absl::InlinedVector<T, N, A>& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
// `operator<(...)`
|
|
//
|
|
// Tests whether the value of an inlined vector is less than the value of
|
|
// another inlined vector using a lexicographical comparison algorithm.
|
|
template <typename T, size_t N, typename A>
|
|
bool operator<(const absl::InlinedVector<T, N, A>& a,
|
|
const absl::InlinedVector<T, N, A>& b) {
|
|
auto a_data = a.data();
|
|
auto b_data = b.data();
|
|
return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
|
|
b_data + b.size());
|
|
}
|
|
|
|
// `operator>(...)`
|
|
//
|
|
// Tests whether the value of an inlined vector is greater than the value of
|
|
// another inlined vector using a lexicographical comparison algorithm.
|
|
template <typename T, size_t N, typename A>
|
|
bool operator>(const absl::InlinedVector<T, N, A>& a,
|
|
const absl::InlinedVector<T, N, A>& b) {
|
|
return b < a;
|
|
}
|
|
|
|
// `operator<=(...)`
|
|
//
|
|
// Tests whether the value of an inlined vector is less than or equal to the
|
|
// value of another inlined vector using a lexicographical comparison algorithm.
|
|
template <typename T, size_t N, typename A>
|
|
bool operator<=(const absl::InlinedVector<T, N, A>& a,
|
|
const absl::InlinedVector<T, N, A>& b) {
|
|
return !(b < a);
|
|
}
|
|
|
|
// `operator>=(...)`
|
|
//
|
|
// Tests whether the value of an inlined vector is greater than or equal to the
|
|
// value of another inlined vector using a lexicographical comparison algorithm.
|
|
template <typename T, size_t N, typename A>
|
|
bool operator>=(const absl::InlinedVector<T, N, A>& a,
|
|
const absl::InlinedVector<T, N, A>& b) {
|
|
return !(a < b);
|
|
}
|
|
|
|
// `AbslHashValue(...)`
|
|
//
|
|
// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
|
|
// call this directly.
|
|
template <typename H, typename T, size_t N, typename A>
|
|
H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
|
|
auto size = a.size();
|
|
return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
|
|
}
|
|
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_
|